网校教育资源平台

湘教版数学八年级上册第五章第二节二次根式乘法和除法课件

评价文档:
文档评论: 0

相关文档推荐

华师大版数学九年级上册第二十二章二次根式全章学案(无答案)
免费
人教版(新)数学八年级下册第十六章第三节二次根式的混合运算课件
免费
人教版(新)数学八年级下册第十六章第三节二次根式的加减课件
免费
浙教版数学八年级下册第一章二次根式复习课件
免费
人教版(新)数学八年级下册第十六章二次根式复习课件
免费
2018年中考数学复习-二次根式
免费
中考数学复习-二次根式
免费
华师大版数学九年级上册第二十二章第三节二次根式的加减教学设计
免费
人教版(新)数学八年级下册第十六章第二节二次根式的除法课件
免费
人教版(新)数学八年级下册第十六章第三节二次根式的加减课件
免费
青岛版数学八年级下册第九章第一节二次根式及其性质课件
免费
青岛版数学八年级下册第九章第一节二次根式及其性质课件
免费
人教版(新)数学八年级下册第十六章二次根式测试题
免费
人教版(新)数学八年级下册第十六章二次根式测试题
免费
人教版(新)数学八年级下册第十六章二次根式测试题
免费
青岛版数学八年级下册第七章第六节立方根课件
免费
青岛版数学八年级下册第七章第六节立方根教案
免费
青岛版数学八年级下册第七章第六节立方根习题
免费
青岛版数学八年级下册第七章第五节平方根习题
免费
湘教版数学八年级下册第四章第二节分母有理化课件
免费

初中数学审核员

中国现代教育网
分享到:
2积分 下载
二次根式的除法
       复习提问
  3.二次根式的乘法:
                    (a≥0,b≥0)
算术平方根的积等于各个被开方数积的算术平方根

积的算术平方根等于积中各因式的算术平方根.
  思考:二次根式的除法有没有类似的法则呢?
  两个二次根式相除,怎样进行呢?商的算术平方根
  又等于什么?
  计算下列各式,观察计算结果,你发现什么规律?


      =                  =

 规律:

两个二次根式相除,等于把被开方数相除,所得商作
为商的被开方数
    两个二次根式相除,等于把被开方数相除,
    所得商作为商的被开方数
例4:计算

 解:
       试一试试一试
       计算:


解:


                                          如果根号前
                                          有系数,就
                                          把系数相除
                                          ,仍旧作为
                                          二次根号前
                                          的系数。
     商的算术平方根等于被开方数中分子,分
     母算术平方根的商。
例5:化简

解:
                              注意:
                              如果被开方数是
                              带分数,应先化
                              成假分数。
 练习一:


解:
 例6:计算
解:

                         在二次根式的运算中, 
                       最后结果一般要求
                       (1)分母中不含有二次根式.
                       (2) 最后结果中的二次根式
                       要求写成最简的二次根式
                       的形式.
      1.被开方数不含分母
     2.被开方数不含能开得尽
     方的因数或因式
即:二次根式化简后,被开方数不含分母,并且被开方
数中所有因式的幂的指数小于2,像这样的二次根式称
为最简二次根式.
  探究探究
下列根式中,哪些是最简二次根式?下列根式中,哪些是最简二次根式?

 ××   ××   √√     ××    ××

  √√      ××  √√      √√
练习一:把下列各式化简(分母有理化):


解:


    注意:要进行根式化简,关键是要搞清楚分
    式的分子和分母都乘什么,有时还要先对分
    母进行化简。
     练习二:
1.在横线上填写适当的数或式子使等式成立。
            (    )= 4                 (     )= 10

            (         )= a-1

2.把下列各式的分母有理化:


 3.化简:
思考题:

课堂小结:
 1. 二次根式的除法有两种常用方法:
(1)利用公式:

(2)把除法先写成分式的形式,再进行分母有理
     化运算。
 2. 在进行分母有理化之前,可以先观察把能化简的           
 二次根式先化简,再考虑如何化去分母中的根号。
 3. 利用商的算术平方根的性质化简二次根式。
  二次根式的化简要求满足以下两条:
  (1)被开方数的因数是整数,因式是整式,也就是说“被开方数
  不含分母”.
  (2)被开方数中不含能开得尽的因数或因式,也就是说“被开
  方数的每一个因数或因式的指数都小于2”.
2积分下载